YINAN SHU
  • Home

Yinan Shu
​

Research Associate, working in Prof. Donald G. Truhlar's group
email: yinan.shu.0728@gmail.com
            shuxx055@umn.edu




  
>>This artwork comes from [WonderNet] , an exhibition at the intersection of science and art

About

Where have I been ?
​

Now at University of Minnesota, Minneapolis, MN, USA
Ph.D. in Chemistry, Michigan State University, East Lansing, MI, USA                              
Advisor: Prof. Benjamin G. Levine
B.Sc. in Chemistry (Chemistry Honor Class), Wuhan University, Hubei, China
B.Sc. in Biological Science (Second major), Wuhan University, Hubei, China
​Born in Hangzhou, Zhejiang, China
What interests me ?

Behaviors of molecules and materials upon excitations
Theoretical methods and algorithms development to help us better understand complex behaviors of molecules and materials, including multi-reference electronic structure theories, density functional theory, diabatization methods, GPU accelerated algorithms, nonadiabatic dynamics.

Harnessing the never-ending increase of the data
Database, benchmark, machine learning, to develop better materials, better density functionals, and better electronic structure methods

Next generation materials
Quantum materials, photocatalysis

Quantum computing
understanding promising quantum computing materials, quantum algorithms

Awards

2020 ACS PHYS Division Young Investigator Award
2020 Robin Hochstrasser Young Investigator Award
2021​ Spring Wiley Computers in Chemistry Outstanding Postdoc Award


Teaching at Michigan State
​

CEM484, Molecular Thermodynamics
CEM141, General Chemistry
CEM152, Chemical Principles 
CEM151, Chemical Principles
CEM161, General Chemistry lab 
CEM162, General Chemistry lab 
Picture

Publications

Reviews and Perspectives:
Nonradiative Recombination in Materials:

1. Y. Shu, B. S. Fales, W.-T. Peng, and B. G. Levine, Understanding Nonradiative Recombination through Defect-Induced Conical intersections, J. Phys. Chem. Lett. 8, 4091 (2017).
2. B. G. Levine, M. P. Esch, B. S. Fales, D. Hardwick, W.-T. Peng, and Y. Shu, Conical Intersections at the Nanoscale: Molecular Ideas for Materials, Annu. Rev. Phys. Chem. 70, 21 (2019).
Electronic Structure Theory:
1. B. G. Levine, A. S. Durden, M. P. Esch, F. Liang, Y. Shu, CAS without SCF - Why to use CASCI and Where to Get the Orbitals, J. Chem. Phys. 154, 090902 (2021).
2. Y. Shu, Z. Varga, S. Kanchanakungwankul, L. Zhang, D. G. Truhlar, Diabatic States of Molecules, J. Phys. Chem. A 126, 992 (2022).
Nonadiabatic Dynamics:
1. Y. Shu, D. G. Truhlar, Decoherence and Its Role in Electronically Nonadiabatic Dynamics,  J. Chem. Theory Compute. 19, 380 (2023).
Complete List:
  1. Y. Shu, B. G. Levine, Reducing the propensity for unphysical wavefunction symmetry breaking in multireference calculations of the excited states of semiconductor clusters, J. Chem. Phys. 139, 074102 (2013).
  2. Y. Shu, B. G. Levine, Non-radiative recombination via conical intersection at a semiconductor defect, J. Chem. Phys. 139, 081102 (2013). 
  3. Y. Shu, B. G. Levine, Do excited silicon-oxygen double bonds emit light? J. Phys. Chem. C 118, 7669 (2014).
  4. A. Konar, Y. Shu, V. V. Lozovoy, J. E. Jackson, B. G. Levine, and M. Dantus, Polyatomic molecules under intense femtosecond laser irradiation, J. Phys. Chem. A 118, 11433 (2014). (Feature Article and Cover)
  5. Y. Shu, B. G. Levine, Nonradiative recombination via conical intersections arising at defects on the oxidized silicon surface, J. Phys. Chem. C 119, 1737 (2015). 
  6. Y. Shu, E. G. Hohenstein, and B. G. Levine, Configuration interaction singles natural orbitals: an orbital basis for an efficient and size intensive multireference description of electronic excited states, J. Chem. Phys. 142, 024102 (2015). 
  7. Y. Shu, B. G. Levine, Simulated evolution of fluorophores for light emitting diodes, J. Chem. Phys. 142, 104104 (2015). 
  8. Y. Shu*, B. S. Fales*, and B. G. Levine, Defect-Induced Conical Intersections Promote Nonradiative Recombination, Nano Lett. 15, 6247 (2015). * These authors contributed equally to this work.
  9. Y. Shu, U. R. Kortshagen, B. G. Levine, and R. J. Anthony, Surface Structure and Silicon Nanocrystal Photoluminescence: The Role of Hypervalent Silyl Groups, J. Phys. Chem. C 119, 26683 (2015). 
  10. Y. Shu, B. G. Levine, First Principles Study of Non-Radiative Recombination in Silicon Nanocrystals: The Role of Surface Silanol, J. Phys. Chem. C 120, 23246 (2016).
  11. Y. Shu*, K. Parker*, and D. G. Truhlar, Dual-Functional Tamm-Dancoff Approximation: A Convenient Density Functional Method that Correctly Described S1/S0Conical Intersections, J. Phys. Chem. Lett. 8, 2107 (2017).  * These authors contributed equally to this work.
  12. Y. Shu, B. S. Fales, W.-T. Peng, and B. G. Levine, Understanding Nonradiative Recombination through Defect-Induced Conical intersections, J. Phys. Chem. Lett. 8, 4091 (2017). 
  13. B. S. Fales, Y. Shu, B. G. Levine, and E. G. Hohenstein, Complete Active Space Configuration Interaction from State-Averaged Configuration Interaction Singles Natural Orbitals: Analytic First Derivatives and Derivative Coupling Vectors, J. Chem. Phys. 147, 094104 (2017).
  14. Y. Shu, D. G. Truhlar, Doubly Excited Character or Static Correlation of the Reference State in the Controversial 21Ag State of trans-Butadiene? J. Am. Chem. Soc. 139, 13700 (2017).
  15. Y. Shu, K. A. Parker, and D. G. Truhlar, Dual-Functional Tamm-Dancoff Approximation with Self-Interaction-Free Orbitals: Vertical Excitation Energies and Potential Energy Surfaces near an Intersection Seam, J. Phys. Chem. A 121, 9728 (2017).
  16. W. T. Peng, B. S. Fales, Y. Shu, and B. G. Levine, Dynamics of Recombination via Conical Intersection in a Semiconductor Nanocrystal, Chem. Sci. 9, 681 (2018).
  17. Y. Shu, D. G. Truhlar, Improved Potential Energy Surfaces of Thioanisole and the Effect of Upper Surface Variations on the Product Distribution Upon Photodissociation. Chem. Phys. 515, 737 (2018).
  18. Y. Shu, S. J. Dong, K. A. Parker, J. L. Bao, L. Zhang and D. G. Truhlar, Extended Hamiltonian Molecular Dynamics: Semiclassical Trajectories with Improved Conservation of Zero Point Energy, Phys. Chem. Chem. Phys. 20, 30209 (2018). (selected as “2018 PCCP HOT Articles”)
  19. B. G. Levine, M. P. Esch, B. S. Fales, D. Hardwick, W.-T. Peng, and Y. Shu, Conical Intersections at the Nanoscale: Molecular Ideas for Materials, Annu. Rev. Phys. Chem. 70, 21 (2019).
  20. M. P. Esch, Y. Shu, and B. G. Levine, A Conical Intersections Perspective on the Low Nonradiative Recombination Rate in Lead Halide Perovskites, J. Phys. Chem. A 123, 2661 (2019).
  21. Y. Shu, J. Kryven, A. Gustavo Sampaio de Oliveira-Filho, S. L. Mielke, G.-L. Song, S. L. Li, R. Meana-Pañeda, B. Fu, J. M. Bowman, and D. G. Truhlar, Direct Diabatization and Analytic Representation of Coupled Potential Energy Surfaces and Couplings for the Reactive Quenching of the Excited 2Σ+ State of OH by Molecular Hydrogen, J. Chem. Phys. 151, 104311 (2019).
  22. Y. Shu*, L. Zhang*, Z. Varga, K. A. Parker, S. Kanchanakungwankul, S. Sun, D. G. Truhlar, Conservation of Angular Momentum in Direct Nonadiabatic Dynamics, J. Phys. Chem. Lett. 3, 1135 (2020). * These authors contributed equally to this work.
  23. Y. Shu*, L. Zhang*, S. Mai, S. Sun, L. González, D. G. Truhlar, Implementation of Coherent Switching with Decay of Mixing in the SHARC program, J. Chem. Theory Comput. 16, 3464 (2020). * These authors contributed equally to this work.
  24. Y. Shu, D. G. Truhlar, Relationships Between Orbital Energies, Optical and Fundamental Gaps, and Exciton Shifts in Approximate Density Functional Theory and Quasiparticle Theory,  J. Chem. Theory Comput. 16, 4337 (2020).
  25. Y. Shu*, L. Zhang*, S. Sun, D. G. Truhlar, Time-Derivative Couplings for Self-Consistent Electronically Nonadiabatic Dynamics, J. Chem. Theory Comput. 16, 4098 (2020). * These authors contributed equally to this work.
  26. Y. Shu, D. G. Truhlar, Diabatization by Machine Intelligence, J. Chem. Theory Comput. 16, 6456 (2020)
  27. Y. Shu, Z. Varga, A. Gustavo Sampaio de Oliveira-Filho, D. G. Truhlar, Permutationally Restrained Diabatization by Machine Intelligence, J. Chem. Theory Comput. 17, 1106 (2021).
  28. L. Zhang*, Y. Shu*, S. Sun, D. G. Truhlar, Direct Coherent Switching with Decay of Mixing Intersystem Crossing Dynamics of Thioformaldehyde (CH2S): The Effect of Decoherence, J. Chem. Phys. 154, 094310 (2021). * These authors contributed equally to this work.
  29. B. G. Levine, A. S. Durden, M. P. Esch, F. Liang, Y. Shu, CAS without SCF - Why to use CASCI and Where to Get the Orbitals, J. Chem. Phys. 154, 090902 (2021).
  30. Y. Shu*, L. Zhang*, X. Chen, S. Sun, Y. Huang, D. G. Truhlar, Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping,  J. Chem. Theory Compute. 18, 1320 (2022). * These authors contributed equally to this work.​
  31. Y. Shu, Z. Varga, S. Kanchanakungwankul, L. Zhang, D. G. Truhlar, Diabatic States of Molecules, J. Phys. Chem. A 126, 992 (2022).
  32. S. Han,  A. G. S. de Oliveira-Filho, Y. Shu, D. G. Truhlar, H. Guo, Semiclassical Trajectory Studies of Reactive and Nonreactive Scattering of OH(A 2Σ+) BY H2 Based on an Improved Full-Dimensional Ab Initio Diabatic Potential Energy Matrix, Chem. Phys. Chem. 23, e202200039. 
  33. L. Zhang*, Y. Shu*, C. Xing, X. Chen, S. Sun, Y. Huang, D. G. Truhlar, Recommendations on the Dependent of G0W0 on the Starting Orbitals for Molecules and Crystals, J. Chem. Theory Comput. 18, 3523 (2022).
  34. Z. Varga, Y. Shu, N. Jiaxing, Diabatic Potential Energy Surface and Semiclassical Multi-State Dynamics for Fourteen Coupled 3A' States of O3. Electron. Struct. 4, 047002 (2022).
  35. L. Zhang*, Y. Shu*, S. Bhaumik, X. Chen, S. Sun, Y. Huang, D. G. Truhlar, Nonadiabatic Dynamics of 1,3-Cyclochexadiene by Curvature-Driven Coherent Switching with Decay of Mixing, J. Chem. Theory Comput. 18, 7073 (2022).
  36. Y. Shu, D. G. Truhlar, Decoherence and Its Role in Electronically Nonadiabatic Dynamics,  J. Chem. Theory Compute. 19, 380 (2023).
  37. Y. Shu*, L. Zhang*, D. Wu, X. Chen, S. Sun, D. G. Truhlar, New Gradient Correction Scheme for Electronically Nonadiabatic Dynamics Involving Multiple Spin States. Submitted to J. Chem. Theory Comput.
  38. X. Zhao, Y. Shu, L. Zhang, X. Xu, D. G. Truhlar, Direct Nonadiabatic Dynamics of Ammonia with Curvature-Driven Coherent Switching with Decay of Mixing and with Fewest Switches with Time Uncertainty: An Illustration of Population Leaking in Trajectory Surface Hopping Due to Frustrated Hops, accepted by J. Chem. Theory Comput.
  39. Y. Shu, L. Zhang, D. G. Truhlar, Coherent Switching with Decay of Mixing under an Intense Laser Field, in preparation
  40. Y. Shu, L. Zhang, D. G. Truhlar, Electronic Decoherence Time, in preparation
  41. Y. Shu, D. G. Truhlar, Does Energy Based Decoherence Time Makes Sense? in preparation

Conferences
Y. Shu, B. G. Levine. “Fixing the Symmetry Breaking Problem in Multireference Wavefunctions by Singly-Excited Active Space Self-Consistent Field Method.” 
Midwestern Symposium on Undergraduate Research in Chemistry, East Lansing, MI, Oct. 5, 2012
Y. Shu, B. G. Levine. “Non-radiative Recombination via Conical Intersection at Semiconductor Defects.”
Midwestern Symposium on Undergraduate Research in Chemistry, East Lansing, MI, Oct. 5, 2013

Y. Shu, B. G. Levine.  “An Efficient, Size-Intensive and Excited State Size-Consistent Multireference Method.” 
American Conference on Theoretical Chemistry, Telluride, CO, Jul. 21, 2014
Y. Shu, B. G. Levine.  “Excited State Dynamics of Oxygen-Containing Defects on the Silicon Surface.” Midwest Conference on Theoretical Chemistry, Evanston, IL, Jun. 15, 2014
Y. Shu, B. G. Levine.  “Evolutionary Design of Emitters for Organic Light-Emitting Diodes”
251st American Chemical Society National Meetings & Exposition, San Diego, CA, Mar. 16, 2016
Y. Shu, K. A. Parker, D. G. Truhlar.  “Dual Functional Tamm-Dancoff Approximation: A Recipe to Partially Recover the Double Excitations Within the Linear Response Theory”
Chemical Theory Center Seminar, Minneapolis, MN, Feb. 10, 2017
Y. Shu, K. A. Parker, D. G. Truhlar.  “Dual Functional Tamm-Dancoff Approximation: A Convenient Density Functional Method that Correctly Describes S1/S0Conical Intersections” 
Midwest Conference on Theoretical Chemistry, East Lansing, MI, Jun. 3, 2017
Y. Shu, K. A. Parker, D. G. Truhlar.  “Dual Functional Tamm-Dancoff Approximation: A Convenient Density Functional Method that Correctly Describes S1/S0Conical Intersections” 
American Conference on Theoretical Chemistry, Boston, MA, Jul. 17, 2017
Invited: Y. Shu, K. A. Parker, D. G. Truhlar.  “Dual Functional Tamm-Dancoff Approximation: A Convenient Density Functional Method that Correctly Describes S1/S0Conical Intersections”
American Physics Society March Meeting, Los Angeles, CA, Mar. 8, 2018
Invited: Y. Shu, D. G. Truhlar. "Conservation of Angular Momentum in Mixed Quantum-Classical Direct Nonadiabatic Dynamics" 
American Chemistry Society Fall Meeting, Virtual Meeting, Aug. 19, 2020
Invited: Y. Shu, D. G. Truhlar. "Diabatization by Machine Intelligence" 
American Chemistry Society Spring Meeting, Virtual Meeting, Apr. 9, 2021
Y. Shu, D. G. Truhlar. "Towards More Efficient and Accurate Nonadiabatic Dynamics Algorithms"
American Conference on Theoretical Chemistry, Palisades Tahoe, CA, Jul. 25, 2022
  • Home